Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573298

RESUMO

The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.


Assuntos
Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/genética , Sequência de Aminoácidos/genética , Feminino , Variação Genética , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 16/ultraestrutura , Humanos , Simulação de Dinâmica Molecular , Mutação , Proteínas E7 de Papillomavirus/ultraestrutura , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Multimerização Proteica/genética , Estrutura Quaternária de Proteína/genética , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
2.
Int J Cancer ; 130(8): 1813-20, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21780110

RESUMO

Cervical cancer and many other anogenital and oropharyngeal carcinomas are strongly associated with high-risk human papillomavirus (HPV) persistent infections. HPV E7 oncoprotein is the major viral transforming factor, emerging as a natural candidate for immunotherapy, since it is constitutively expressed in HPV-induced cancer cells. We have previously shown that E7 can self-assemble into soluble and homogeneous spherical oligomers, named E7 soluble oligomers (E7SOs). These are highly resistant to thermal denaturation, providing an additional advantage given the demand for highly stable vaccine formulations. Here, we present a new chemically stabilized form of the E7SOs (E7SOx) and analyzed its effect in a murine HPV-tumor model. Vaccination of female mice with low doses of E7SOx combined with a CpG-rich oligonucleotide (ODN) as adjuvant elicits a strong long-lasting protection against E7-expressing tumor cells, preventing tumor outgrowth after rechallenge 90-days later. Therapeutic experiments showed that E7SOx/ODN vaccination significantly delays tumor growth and extends the time of survival of the treated mice in a dose-dependent manner. These proof-of-principle preclinical experiments denote the potential applicability of our E7SOx-based vaccine to the treatment of cervical cancer and other mucosal HPV-related neoplastic lesions. In addition to thermal, chemical and proteolysis stability, the combined recombinant and chemical modification nature of the E7SOx vaccine candidate, results in low-cost, of particular interest in developing countries, where most of the cervical cancer cases occur and the most affected population is at reproductive age.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Anticâncer/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neoplasias/terapia , Neoplasias/virologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/ultraestrutura , Infecções por Papillomavirus/induzido quimicamente , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/administração & dosagem , Multimerização Proteica , Estabilidade Proteica , Resultado do Tratamento , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/virologia , Vacinação/métodos
3.
J Transl Med ; 9: 69, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21592382

RESUMO

BACKGROUND: The HPV16 E7 protein is both a tumour-specific and a tumour-rejection antigen, the ideal target for developing therapeutic vaccines for the treatment of HPV16-associated cancer and its precursor lesions. E7, which plays a key role in virus-associated carcinogenesis, contains 98 amino acids and has two finger-type structures which bind a Zn++ ion. The ability of an Escherichia coli-produced E7-preparation, assembled into particles, to induce protective immunity against a HPV16-related tumour in the TC-1-C57BL/6 mouse tumour model, was evaluated. METHODS: E7 was expressed in E. coli, purified via a one-step denaturing protocol and prepared as a soluble suspension state after dialysis in native buffer. The presence in the E7 preparation of particulate forms was analysed by non-reducing SDS-PAGE and negative staining electron microscopy (EM). The Zn++ ion content was analysed by mass-spectrometry. Ten µg of protein per mouse was administered to groups of animals, once, twice or three times without adjuvant. The E7-specific humoral response was monitored in mice sera using an E7-based ELISA while the cell-mediated immune response was analysed in mice splenocytes with lymphoproliferation and IFN-γ ELISPOT assays. The E7 immunized mice were challenged with TC-1 tumour cells and the tumour growth monitored for two months. RESULTS: In western blot analysis E7 appears in multimers and high molecular mass oligomers. The EM micrographs show the protein dispersed as aggregates of different shape and size. The protein appears clustered in micro-, nano-aggregates, and structured particles. Mice immunised with this protein preparation show a significant E7-specific humoral and cell-mediated immune response of mixed Th1/Th2 type. The mice are fully protected from the tumour growth after vaccination with three E7-doses of 10 µg without any added adjuvant. CONCLUSIONS: This report shows that a particulate form of HPV16 E7 is able to induce, without adjuvant, an E7-specific tumour protection in C57BL/6 mice. The protective immunity is sustained by both humoral and cell-mediated immune responses. The E. coli-derived HPV16 E7 assembled in vitro into micro- and nanoparticles represents not only a good substrate for antigen-presenting cell uptake and processing, but also a cost-effective means for the production of a new generation of HPV subunit vaccines.


Assuntos
Imunidade/imunologia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Proteínas E7 de Papillomavirus/administração & dosagem , Proteínas E7 de Papillomavirus/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Adjuvantes Imunológicos , Animais , Formação de Anticorpos/imunologia , Western Blotting , Modelos Animais de Doenças , Imunidade Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/ultraestrutura , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...